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Abstract    In a two-dimensional and linear framework, a transformation was developed to derive 
eigensolutions of internal waves over a subcritical hyperbolic slope and to approximate the continental 
slope and shelf. The transformation converts a hyperbolic slope in physical space into a flat bottom in 
transform space while the governing equations of internal waves remain hyperbolic. The eigensolutions 
are further used to study the evolution of linear internal waves as it propagates to subcritical continental 
slope and shelf. The stream function, velocity, and vertical shear of velocity induced by internal wave at 
the hyperbolic slope are analytically expressed by superposition of the obtained eigensolutions. The 
velocity and velocity shear increase as the internal wave propagates to a hyperbolic slope. They become 
very large especially when the slope of internal wave rays approaches the topographic slope, which is 
consistent with the previous studies.  
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1 INTRODUCTION 

Internal waves are those that take place in a 
stratified fluid. The largest vertical displacement of 
internal waves occurs within the fluid and opposed 
to that of the surface waves. Due to its importance 
on the diapycnal mixing, generation and 
propagation of internal waves over oceanic 
topography become an active topic of physical 
oceanography (Wunsch and Ferrari, 2004; Dai et al., 
2005; Nash et al., 2006; Petrelis et al., 2006). It is 
well known that the linear internal waves may 
evolve into nonlinear solitary waves when they 
propagate to a continental slope, as shown by many 
previous studies (Liu et al., 1998; Cai and Gan, 
2001; Fang and Du, 2005). Additional to the 
nonlinear evolution, there are still many linear and 
important processes which need further 
investigation, such as reflection and scattering of 
internal waves when internal waves propagate to the 
continental slope (Baines, 1971a, b; Müller and Liu, 
2000a, b). In this paper, scattering of internal waves 

means the redistribution of incoming energy flux in 
physical space and mode number range when the 
linear internal waves propagate to sloping 
topography (Müller and Liu, 2000a, b). The 
reflection and scattering processes have been 
studied by previous researches since the 
redistribution of energy flux is helpful for studying 
the diapycnal mixing (Phillips, 1977; Müller and 
Liu, 2000a, b).  

Reflection of internal waves off an infinite linear 
slope was studied in two-dimensional framework by 
Phillips (1977) while Wunsch (1968) provided an 
eigensolutions of internal waves propagating to a 
subcritical linear slope. A linear slope can give a 
good approximation for several actual topographies 
while the curved topography is common in the 
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ocean. Baines (1971a, b) employed a ray-tracing 
method and reduced the reflection of internal waves 
off a curved slope to solve coupled Fredholm 
integral equations of the second type. Müller and 
Liu (2000a, b) used a mapping function based on 
ray tracing to study scattering of internal waves at 
finite topography in two dimensions. Unfortunately, 
the ray-tracing method is complicated and it is 
inconvenient to use numerical results for further 
theoretical analysis. Therefore, finding eigen- 
solutions of internal waves over a curved slope is 
still an important topic for studying the reflection or 
scattering process.  

In this study, a transformation was developed to 
derive eigensolutions of internal waves at a 
subcritical hyperbolic slope. The hyperbolic slope 
can approximate vertical sections of many bottom 
topographies, such as continental slope and shelf. 
The eigensolutions are used to discuss the evolution 
of internal waves in linear framework as they 
propagate from deep ocean to hyperbolic slope.  

2 EIGENSOLUTIONS OF INTERNAL 
WAVES AT HYPERBOLIC SLOPE 

For a continental slope, a dextral Cartesian 
coordinate system is set up as follows: x

y
 

represents a cross-slope axis positive shoreward;  
represents an axis along continental slope, and , a 
vertical axis positive up. In most of the real oceans, 
the length of continental slope, i.e., the scale along 
the continental slope, is generally much larger than 
the width. It implies that the gradients of variables 
along  axis can be ignored compared with those 
along 

z

y
x  axis. Then a two-dimensional framework 

is used to describe the internal waves. In a 
two-dimensional framework, dimensional internal 
wave equation is given (Appendix A): 

4 4 2 2
2 2
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where  is the Brunt-Väisälä frequency; 

   (1)  

N f the 
Coriolis parameter;   the stream function which 
lets / , /u z w x      
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where  is the bottom boundary. Eq.1 
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( )z h x  
es the intedescrib rnal wave whose frequency   is 

much greater than the Coriolis parameter, i.e., 

f   . 
Generally, the non-dimensional equations are 

nvmore co enient. Introduce: 
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where 

(3)  

  is the amplitude of  ; , the 
m water depth of the studies area. We then 
in: 
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uation can be reduced to: 
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lso the non-dimensional equa  th
 part, the non-dimensional equation is 

(5)  

which is a
following

tion. In e 

applied to discuss the propagation of internal wave 
to a curved slope. For a monochromatic wave with 
frequency  , let ( , ) exp(i )x z t   , then 

0
1

 xxzz        
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where 

2
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N

 2c 

The bo

(7)  


undary conditions become 

0, at 0, ( )z z h x              

ing 

 (8)  

Assum N const , then 
ottom is flat, i.e., , it is easy to 

tions of 

c const .  
If the b

get
( ) 1h x  

 the eigensolu Eq.6, 

 sin( )n n n n n nB k xsin( ) cos( )k z A k x     

.. . However, the flat 
se, the actual bottom 

phy is usually com

 (9)  

where 
bottom

, 1,2,3.nk n n 
 is only a special ca

topogra plex and irregular. 
Generally speaking, it is difficult to find the 
eigensolutions of Eq.6 when h(x) changes with x, 
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which is the reason why ray-tracing method is used 
to study the propagation of internal waves to a 
curved topography. 

Wunsch (1968) obtained the eigensolutions of 
internal waves at a subcritical linear slope 

rxx )  in the polar coordinates, the solutions in 
Cartesian coordinates are: 



h(



 
exp(i )

cos[ ln( )] cos[ ln( )]
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where 
2

, 1,2,3...
ln( / )n

n
q n

c r c r




 
   

obvious that the governing equa  and the 
boundary conditions are all satisfied. Wunsch’s 
so

   

into the governing Eq.6, yield (see Appendix B): 

It is tion

lutions revealed that it is possible to get the 
eigensolutions of internal waves at a subcritical 
curved slope if a proper method is used. In the 
following text, a transformation is introduced to 
derive the eigensolutions of internal waves at a 
subcritical hyperbolic slope. 

Introduce the following transformation 
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The transformation converts the upper boundary 
 to0z   0   and the hyperbolic slope 

( )h x
r

x
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Moreover,  for subcritical 
topography, then Eq.6 can be simplified to 
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(15

It is obvious that Eq.15 is exactly the solutions of 
Eq.5 with a hyperbolic bottom boundary 

) 

( ) /h x r x . Compared with the linear slope 
studied by Wunsch (1968), the slope of hyperb
top

vertical sec

 
ic 

that 
olic 

ography changes along x-coordinate and the 
hyperbolic slope offers better approximation for 

tions of the continental slope and shelf. 
The eigensolutions are available to study in detail 
the structures of velocity field in a linear framework 
as the internal waves propagate to hyperbolic 
topography. Noting that the solutions can only be 
applied to a subcritical topography. In other words, 
the topographic slope must be smaller than the slope 
of internal wave rays. 

3 PROPAGATION OF INTERNAL WAVES 
FROM DEEP OCEAN TO HYPERBOLIC 
SLOPE 

Considering a periodic internal wave propagating 
from a “deep” region of a flat bottom onto a
hyperbolic slope as shown in Fig.1, a hyperbol
slope  ( ) / ( 0)x r x r h  is connected to flat 
bottom of abyssal ocean whose non-dimensional 
depth is 1.0. 0x x  is the vertical section 
connecting deep ocean region with hyperbolic slope 
region. 0x  is chosen so that

ope of in

 the maximum slope of 
hyperbolic topography, i.e., 2

0/r x , must be 
smaller than the sl ternal wave rays because 
only the subcritical topography is considered in this 
study. G erally speaking, the velocity field and the 
shear will change as the internal w ropagate up 
to a sloping topography (Müller and Liu, 2000a, b). 
To obtain fine structures of velocity field in 
hyperbolic slope region, employing the 

en
aves p
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eigensolutions in Eq.14 or 15 is the key to describe 
evolution of internal waves and corresponding 
velocity field in hyperbolic regions when a periodic 
internal wave propagates from deep ocean. 

the internal waves is focused. Let: 

1 sin( )exp(i )A kz ckx                 (  17)

Note that Eq.17 can describe only the internal 
wave at deep ocean region where the bottom 
boundary is flat. When the internal wave propagates 
up to a hyperbolic slope, the stream function should 
be described with solutions in Eqs.14, i.e.,  

 

 2 1 2
1
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n

q D q D q  
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 
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Fig.1 Schematic map of topography 

Supposedly, an incoming monochromatic 
internal wave from deep ocean is 

  1 Re sin exp i( )A kz ckx t    

where 0/nq n 

0 ,

, D1n, D2n the undetermined 
coefficients, which can be determined by the 
matching conditions between Eqs.18 and 17. Here, 
the matching conditions provided by Wunsch (1968) 
are used, which requires that the stream function 
and its gradient remain constant along the section, 
i.e.,   where        (16)  
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and Liu, 2000a). Thereby, the spatial evolution of  

not chang s 
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1  is only a function of   along the 0   
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From the above equations, one can get: 
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Substituting (20) into (18) yields: 
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This is the expression for the evolution of incoming internal waves shown in Eq.17 at a hyperbolic slope 
region. In Cartesian coordinates, the solutions can be rewritten as: 

 
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2 2
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The horizontal velocity corresponding to Eq.22 is: 
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The vertical shear of the horizontal velocity is: 
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The horizontal velocity and the vertical shear of 
the incoming wave 1  at deep ocean are: 

1
1 cos( )exp(i )u Ak kz

z
ckx


   


       (25)

21 sin( )exp(i )
u

Ak kz ckx
z





           (  26)

The real parts of 1 1 1  multiplied by , , /u u  z
exp( i )t

, ,u u

 are, respectively, the stream function, 
horizontal velocity, and shear of the incoming wave 
at deep ocean region while the real parts of 

2 2 2  multiplied by / z exp( i )t  are 
those of the evolution of incoming internal wave 
propagating up to a hyperbolic slope region.  

Fig.2 gives an example of the stream function of 
internal waves propagating from deep ocean to 
hyperbolic slope. In this figure, the hyperbolic slope 
begins with 0  and ends at x=70. r= 10.1 is 
chosen so that the maximum topographic slope is 
0.099. The slope of incoming wave rays is 0.1 and 
the mode number is one, i.e., 

10.1x 

k  . It is evident 
that the wavelength becomes smaller as internal 
wave propagates from deep ocean to hyperbolic 
slope. The pattern of stream function also changes at 

the same period. In the deep ocean region, the 
streamlines are like a regular ellipse, while over the 
hyperbolic slope, the ellipse becomes irregular. The 
vertical section 10.1x   is the section that 
connects the hyperbolic slope region with the deep 
ocean region. The stream function is smooth near 
this section, which implies that the matching 
conditions provided by Wunsch (1968) work well.  

 

Fig.2 Streamlines of internal wave propagating from deep 
ocean to hyperbolic slope. The slope of incoming 
wave rays is 0.1 and the mode number is one 

The solid line denotes the positive values of stream function and the 

dashed line, the negative values 

Fig.3 shows the stream function, the horizontal 
velocity, and the vertical shear of horizontal velocity 
along the horizontal transect z=-0.05, while the  
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Fig.3 The normalized stream function, horizontal velocity 
(U), and the vertical shear of horizontal velocity (UZ) 
along z=-0.05. The slope of incoming wave rays is 0.2 
and the mode number is one 
The parameters of topography are the same as those in Fig.2 

topography is the same as that in Fig.2. The slope of 
incoming wave rays is 0.2 and the mode number is  

one. The stream function, velocity, and velocity 
shear have been normalized respectively by the 
maximum values in the deep ocean region, which 
means that one is the maximum values of the 
absolute stream function, velocity, and velocity 
shear in a deep ocean region. Then, the enhance- 
ment of velocity and velocity shear can be obviously 
observed when internal waves propagates up to a 
hyperbolic slope. Note that  is the case of 
section that connects deep ocean region with the 
hyperbolic slope. It is obvious that the amplitude of 
normalized horizontal velocity over the slope region 
is larger than one, and the amplitude becomes larger 
when water depth is shallower. The normalized 
velocity shear shows similar behavior to the velocity. 
The maximum value of the normalized velocity in 
hyperbolic slope region is larger than 6.0, while the 
maximum value of the normalized shear is even 
larger than 50. It means that the velocity and 
velocity shear increase evidently as the internal 
waves propagate to a hyperbolic slope, which is 
consistent with previous studies (Wunsch 1968;
Müller and Liu, 2000a, b).

10.1x 

 
Fig.4 The normalized stream function, horizontal velocity (U), and the vertical shear of horizontal velocity (UZ) 

along x=50 when c=0.3 (left panel), c=0.2 (middle panel), and c=0.1 (right panel). The mode number of 
incoming waves is one 

The parameters of topography are the same as those in Fig.2
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For a selected hyperbolic topography, the slope 
of internal wave rays (c) also has influence on the 
distribution of the velocity and velocity shear. Fig.4 
shows the stream function, horizontal velocity, and 
the vertical shear of horizontal velocity along 
vertical section  when c=0.3 (left panel), 
c=0.2 (middle panel), and c=0.1 (right panel). The 
topography is the same as that in Fig.2. The 
variables have been normalized with the respective 
maximum values of deep ocean region. Fig.4 shows 
that the maximum values of absolute velocity and 
velocity shear when c=0.2 are lager than those when 
c=0.3, and when c=0.1 the values are larger than 
those when c=0.2. The velocity and velocity shear 
show extreme large values in the right panel where 
the slope of internal wave rays is 0.1 which is close 
to the maximum topographic slope 0.099. It agrees 
with previous theoretical studies showing the wave 
reflected from the topography has infinite velocity 
and velocity shear when the slope of internal wave 
rays is equal to the topographic slope. Similar 
behaviors can be found along other vertical sections 
of hyperbolic slope region.  

50x 

When the velocity shear is large enough, the 
Richardson numbers may significantly decrease so 
that instability occurs, leading to overturning and 
mixing (Phillips, 1977). Moreover, internal waves 
will evolve into internal solitons when internal 
waves propagate to a continental slope (Liu et al., 
1998; Cai et al., 2001; Fang and Du, 2005). 
However, the instability and the nonlinear evolution 
process should not be the case of this study that 
deals with linear theory only. Even though, the 
eigensolutions of internal waves at continental slope 
and shelf may help estimating the diapycnal mixing 
induced by internal waves. Further study is 
demanded on the nonlinear process.   

4 SUMMARY 

This study concerns the linear evolution of 
internal waves propagating from deep ocean to 
continental slope and shelf. The hyperbolic slope 
rather than the linear slope is used to describe the 
continental slope and shelf. A transformation, which 
can convert the hyperbolic slope in a physical space 
to a flat bottom in transformation space while the 
governing equations of internal waves remain 
hyperbolic, was developed to obtain the eigensolu- 
tions of internal waves over the hyperbolic slope in 
a two-dimensional and linear framework. The 
obtained eigensolutions were then applied to the 

propagation of internal waves from deep ocean to 
hyperbolic slope. The results show that the velocity 
and the velocity shear increased when internal waves 
propagates to the hyperbolic slope. Especially, when 
the slope of internal wave rays approached to the 
topographic slope, the velocity and the velocity shear 
showed extreme large value, which is similar to the 
results of previous studies. The extreme large values of 
velocity and velocity shear would lead to instability 
and mixing. However it was the linear framework that 
used in this study. Therefore, the instability process 
cannot be described. Further study in the future is 
demanded to describe the internal-wave-induced 
diapycnal mixing. 
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Appendix A: internal wave equations 

For a continental slope, a dextral Cartesian coordinate system is set up as follows; x  represents a cross-slope axis positive 

shoreward,  represents an axis along the continental slope, and , a vertical axis positive up. In most of real ocean, the 

length of continental slope, i.e., the scale along the continental slope, is generally much larger than the width. It implies that the 

gradients of variables along  axis can be ignored compared with those along 

y z

y x  axis. However, the velocity component 

along  axis must be included because the Coriolis Effect is important for some linear internal waves. Then in 

two-dimensional framework, the linear internal waves obey (Lamb, 1994; Vlasenko et al., 2005): 
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where  are the three velocity components corresponding to ( , , )u v w   ( , , )x y z   ,  the pressure, p f  the Coriolis parameter, 

 the density in static equilibrium,0  0 ( )z    t e density perturbation from this state due to the wave motion, h 0  th ean 

value of 0

e m

 , g the a celeration due to gravity.  c

From Eqs. (A1) and (A2), one can obtain 
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, the above equation can be reduced to Introduce the stream function, 
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For monochromatic waves of frequency , defines exp(i )t      , then the other wave variables are given by 
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Appendix B: derivation of internal wave equation in transformation space 

For an internal wave equation 
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Eq.B1 is transformed to 
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